Neuro-Oncología
Líneas de investigación
Contenidos con Investigacion .
Neuro-Oncología
Caracterización de la zona peritumoral de los gliomas.
En nuestros proyectos anteriores nos habíamos centrado en el núcleo tumoral de los gliomas. Sin embargo, la recurrencia de los glioblastomas agresivos se produce mayoritariamente en el margen de resección del tumor, una zona poco caracterizada que probablemente es diferente del núcleo tumoral. En colaboración con el Dr. Pérez-Núñez en el H. 12 de Octubre estamos realizando un estudio prospectivo para analizar la composición de esta zona peritumoral. Queremos cuantificar tanto las células neoplásicas como las estromales y cómo cambian tras la cirugía. Nuestro objetivo es identificar enfoques novedosos para atacar a aquellas células tumorales que son responsables de la recurrencia del tumor. Este proyecto nos ha permitido generar una cohorte de biopsias bien definidas guiadas por resonancia magnética, que están siendo analizadas por diferentes técnicas avanzadas (single-nuclei RNAseq, proteómica, inmunofluorescencia “multiplex”). Además, en colaboración con el Dr. Derek Wainwright (Loyola Univ. Chicago) estamos estudiando la relevancia del envejecimiento en el fenotipo de la zona peritumoral de los gliomas, así como el efecto de factores sistémicos (como la inflamación general o el estado de la microbiota) en la respuesta de los cerebros al crecimiento de los gliomas.
Análisis mediante immunofluorescencia de la expresión de NKG2C en la periferia (imágenes superiores) y en el centro (imágenes inferiores) tumoral de muestras de tres pacientes con glioblastoma. Figura sacada de nuestra publicación: deDios et al., J. Inmmunother. Cancer 2024.
Enfoques multidisciplinares para la optimización del tratamiento de los gliomas.
Creemos que se necesitan enfoques multidisciplinares para encontrar terapias eficaces contra los gliomas agresivos. De hecho, hemos colaborado durante varios años con el grupo de Oncología Matemática (MoLAB) de la UCLM (Universidad Castilla la Mancha), dirigido por el Dr. Víctor Pérez-García. Mediante modelos matemáticos, validados con modelos in vitro e in vivo, hemos propuesto esquemas optimizados para el tratamiento con temozolomida y radioterapia. Además, hemos iniciado una colaboración con bioingenieros (Univ. Politécnica de Madrid) y químicos (IMDEA Materiales) para diseñar y probar un dispositivo implantable para el tratamiento de GBM utilizando campos eléctricos alternos (“Tumor Treating Fields”, TTFs).
Otro importante hándicap en el tratamiento del glioma es la dificultad para atravesar la barrera hematoencefálica (“Blood Brain Barrier”, BBB) y alcanzar las células tumorales. Se han propuesto estrategias para permeabilizar selectivamente la BBB, así como el uso de nanopartículas (NPs) para mejorar la penetrancia de los distintos fármacos en los tumores gliales y que eliminen de manera selectiva las células malignas. Sin embargo, todavía no se ha llegado a mejoras en la clínica. El proyecto de colaboración que coordinamos (ReachGLIO, TRANSCAN3) proporcionará el marco preclínico necesario para desarrollar una terapia novedosa y eficaz para el GBM basada en NPs cargadas con potentes fármacos anti-glioblastoma.
Neurodegeneración asociada a gliomas: participación de la disrupción de la BBB.
Aunque las enfermedades neurodegenerativas y los gliomas parecen patologías opuestas del cerebro (una promueve la muerte celular y la otra la proliferación celular) tienen varias características en común, como hemos descrito previamente (Gargini et al., Sci. Trans. Med. 2019). La principal es que ambos tipos de enfermedades se asocian a cambios en la unidad neurovascular y en la permeabilidad de los vasos cerebrales. Nuestra hipótesis es que la alteración de la barrera hematoencefálica, típica de los gliomas agresivos, podría inducir la pérdida neuronal asociada a estos tumores. De hecho, hemos encontrado una correlación directa entre los niveles de fuga de los vasos, y la pérdida de neuronas que rodean a los tumores, asociada a un fuerte aumento de la expresión de señales inflamatorias. Estos resultados se han sometido recientemente a evaluación y abren una nueva vía a intervenciones terapéuticas para inducir la normalización vascular en gliomas, pero también en enfermedades como el Alzheimer.
Proyectos de investigación
Contenidos con Investigacion .
TÍTULO DEL PROYECTO: Maladaptive effects of the aged brain in older adults with glioblastoma. (ARC2300007).
INVESTIGADOR PRINCIPAL: Derek Wainwright (Loyola University) / Pilar Sánchez Gómez.
ENTIDAD FINANCIADORA: American Brain Tumor Association. Collaborative Awards.
IMPORTE: 200.000$ -- DURACIÓN: 2023-2025
TÍTULO DEL PROYECTO: Reaching the heterogeneous vascular landscape of glioblastoma with multifunctional nanomedicine. ReachGLIO.
INVESTIGADOR PRINCIPAL: Pilar Sánchez Gómez (Coordinadora).
ENTIDAD FINANCIADORA: TRANSCAN3 / ERA-NET (FC-AECC e ISCIII)
IMPORTE: 1.391.131€ -- DURACIÓN: 2023-2026
TÍTULO DEL PROYECTO: Dispositivo implantable para el tratamiento de tumores cerebrales mediante campos eléctricos.
INVESTIGADOR PRINCIPAL: Miguel Jiménez Carrizosa (UPM) (Coordinador).
ENTIDAD FINANCIADORA: European Union-Next Generation Funds; Ministerio de Ciencia e Innovación. Líneas estratégicas (PLEC2022-009308).
IMPORTE: 1.174.263€ -- DURACIÓN: 2022-2025
TÍTULO DEL PROYECTO: Mathematical models for the digital transition in neuro-oncology: In-silico design of a clinical trial for glioblastoma. (TED2021-132318B-I00).
INVESTIGADOR PRINCIPAL: Víctor Pérez García (UCLM) / Pilar Sánchez-Gómez
ENTIDAD FINANCIADORA: Proyectos de Transición Ecológica y Transición Digital. European Union-Next Generation Funds; Ministerio de Ciencia e Innovación.
IMPORTE: 230.000€ -- DURACIÓN: 2023-2024
TÍTULO DEL PROYECTO: Characterization of the peritumoral area of glioblastomas: burning the bridges to tumor progression. (PI21CIII/00002/PI21/01168).
INVESTIGADOR PRINCIPAL: Pilar Sánchez-Gómez / Ángel Pérez-Núñez (H12O).
ENTIDAD FINANCIADORA: Instituto de Salud Carlos III (AES-AESI)
IMPORTE: 202.000€ -- DURACIÓN: 2022-2025
TÍTULO DEL PROYECTO: Preclinical studies for the therapeutic development of the drug ICI-118,551
INVESTIGADOR PRINCIPAL: Pilar Sánchez-Gómez / Juan Manuel Sepúlveda (H12O).
ENTIDAD FINANCIADORA: Varsity Pharmaceuticals Limited.
IMPORTE: 95.000€ -- DURACIÓN: 2021-2024
TÍTULO DEL PROYECTO: NKG2C as a surrogate marker for gliomas responding to immune checkpoints inhibitory therapy.
INVESTIGADOR PRINCIPAL: Pilar Sánchez-Gómez
ENTIDAD FINANCIADORA: FC-AECC
IMPORTE: 20.000€ -- DURACIÓN: 2020-2022
TÍTULO DEL PROYECTO: Glioblastoma-derived pericytes modulate vascular fitness: Implications for therapy. RTI2018-093596-B100.
INVESTIGADOR PRINCIPAL: Pilar Sánchez-Gómez
ENTIDAD FINANCIADORA: Ministerio de Ciencia e Innovación.
IMPORTE: 121.000€ -- DURACIÓN: 2019-2021
TÍTULO DEL PROYECTO: Efecto de inhibidores de proteínas IDP ("Intrinsically disordered proteins") sobre el crecimiento y la supervivencia de células gliales
INVESTIGADOR PRINCIPAL: Pilar Sánchez Gómez
ENTIDAD FINANCIADORA: IDP Pharma
IMPORTE: 100.00€ -- DURACIÓN: 2017-2020
TÍTULO DEL PROYECTO: Efecto de Ocoxin+Viusid sobre el crecimiento y supervivencia de los tumores gliales.
INVESTIGADOR PRINCIPAL: Pilar Sánchez Gómez
ENTIDAD FINANCIADORA: CATALYSIS S.L.
IMPORTE: 45.000€ -- DURACIÓN: 2016-2017
TÍTULO DEL PROYECTO: Microenvironment-mediated resistance of glioblastoma: characterization of its biological relevance and proposal of synergistic therapeutical approaches
INVESTIGADOR PRINCIPAL: Pilar Sánchez Gómez
ENTIDAD FINANCIADORA: Ministerio de Economía y Competitividad (MINECO)
IMPORTE: 145.000€ -- DURACIÓN: 2016-2019
Publicaciones destacadas
NKG2C/KLRC2 tumor cell expression enhances immunotherapeutic efficacy against glioblastoma
de Dios O, Ramírez-González MA, Gómez-Soria I, Segura-Collar B, de Andrea CE, Fernández-Rubio L, Hernández-Laín A, Sepúlveda-Sánchez JM, Jiménez-Roldán L, García-Posadas G, Rodríguez-Ruiz ME, Pérez-Núñez A, Wainwright D.A., Gargini R*, Sánchez-Gómez P*. (2024) NKG2C/KLRC2 tumor cell expression enhances immunotherapeutic efficacy against glioblastoma. J. Immunother. Cancer (in press). (IF: 10.3) (D1) (Immunology / Oncology)1. de Dios O, Ramírez-González MA, Gómez-Soria I, Segura-Collar B, de Andrea CE, Fernández-Rubio L, Hernández-Laín A, Sepúlveda-Sánchez JM, Jiménez-Roldán L, García-Posadas G, Rodríguez-Ruiz ME, Pérez-Núñez A, Wainwright D.A., Gargini R*, Sánchez-Gómez P*. (2024). J. Immunother. Cancer (in press). (IF: 10.3) (D1) (Immunology / Oncology)
Age-stratified comorbid and pharmacologic analysis of patients with glioblastoma
Rabin EE, Huang J, Kim M, Mozny A, Lauing KL, Penco-Campillo M, Zhai L, Bommi P, Mi X, Power EA, Prabhu VC, Anderson DE, Barton KP, Walunas TL, Schiltz GE, Amidei C, Sanchez-Gomez P, Thakkar JP, Lukas RV, Wainwright DA. (2024) Age-stratified comorbid and pharmacologic analysis of patients with glioblastoma. Brain Behav. Immun. Health Mar 15:38:100753. PMID: 38600951 doi: 10.1016/j.bbih.2024.100753
DOIEGFR amplification and EGFRvIII predict and participate in TAT-Cx43266-283 antitumor response in preclinical glioblastoma models
Álvarez-Vázquez A, San-Segundo L, Cerveró-García P, Flores-Hernández R, Ollauri-Ibáñez C, Segura-Collar B, Hubert CG, Morrison G, Pollard SM, Lathia JD, Sánchez-Gómez P, Tabernero A. (2024) EGFR amplification and EGFRvIII predict and participate in TAT-Cx43266-283 antitumor response in preclinical glioblastoma models. Neuro Oncol. Mar 20:noae060. PMID: 38507464doi: 10.1093/neuonc/noae060
DOIOn optimal temozolomide scheduling for slowly growing glioblastomas
Segura-Collar B, Jiménez-Sánchez J, Gargini R, Dragoj M, Sepúlveda-Sánchez JM, Pesic M, Ramírez MA, Ayala-Hernández LE, Sánchez-Gómez P*, Pérez-García VM*. (* Co-corresponding author) (2022) On optimal temozolomide scheduling for slowly growing glioblastomas. Neuro-Oncol. Adv. Sep 27;4(1): vdac155. PMID: 36325374 doi: 10.1093/noajnl/vdac155
DOIIDP-410: a Novel Therapeutic Peptide that Alters N-MYC Stability and Reduces Angiogenesis and Tumor Progression in Glioblastomas
Gargini R, Segura-Collar B, Garranzo-Asensio M, Hortigüela R, Iglesias-Hernández P, Lobato-Alonso D, Moreno-Raja M, Esteban-Martin S, Sepúlveda-Sánchez JM, Nevola L, Sánchez-Gómez P. (2022) IDP-410: a Novel Therapeutic Peptide that Alters N-MYC Stability and Reduces Angiogenesis and Tumor Progression in Glioblastomas. Neurotherapeutics. Jan;19(1):408-420. PMID: 35099769 doi: 10.1007/s13311-021-01176-6
DOINetrin-1 in Glioblastoma Neovascularization: The New Partner in Crime?
Vásquez X, Sánchez-Gómez P*, Palma V*. (* Co-corresponding author) (2021) Netrin-1 in Glioblastoma Neovascularization: The New Partner in Crime? Int J Mol Sci. 2021 Jul 31;22(15):8248. PMID: 34361013 doi: 10.3390/ijms22158248.
DOITumor-derived pericytes driven by EGFR mutations govern the vascular and immune microenvironment of gliomas
Segura-Collar B, Garranzo-Asensio M, Herranz B, Hernández-SanMiguel E, Cejalvo T, Casas BS, Matheu A, Pérez-Núñez Á, Sepúlveda-Sánchez JM, Hernández-Laín A, Palma V, Gargini R, Sánchez-Gómez P. (2021) Tumor-derived pericytes driven by EGFR mutations govern the vascular and immune microenvironment of gliomas. Cancer Res. 81(8):2142-2156. PMID: 33593822 doi: 10.1158/0008-5472.CAN-20-3558
DOIBlood-Brain Barrier Disruption: A Common Driver of Central Nervous System Diseases
Segura-Collar B, Mata-Martínez P, Hernández-Laín A, Sánchez-Gómez P*, Gargini R*. (* co-corresponding) (2021) Blood-Brain Barrier Disruption: A Common Driver of Central Nervous System Diseases. The Neuroscientist. Jan 15: 1073858420985838. PMID: 33446074 doi: 10.1177/1073858420985838
DOIImmune profiling of gliomas reveals a connection with Tau function and the tumor vasculature
Cejalvo T*, Gargini R*, Segura-Collar B, Mata P, Herránz B, Cantero D, Ruano Y, García-Pérez D, Pérez-Núñez A, Ramos A, Hernández-Laín A, Cruz Martín-Soberón M, Sánchez-Gómez P# and Sepúlveda-Sánchez JM# (# Co-corresponding author) (* Co-1st author). (2020) Immune profiling of gliomas reveals a connection with Tau function and the tumor vasculature. Cancers. 12-11, pp.E3230. PMID: 33147752doi: 10.3390/cancers12113230
DOICellular plasticity and tumor microenvironment in gliomas: the struggle to hit a moving target
Gargini R, Segura-Co llar B, Sánchez-Gómez P. (2020) Cellular plasticity and tumor microenvironment in gliomas: the struggle to hit a moving target. Cancers. 12(6): E1622. PMID: 32570988 doi: 10.3390/cancers12061622
DOIThe IDH-Tau-EGFR triad defines the neovascular landscape of diffuse gliomas by controlling mesenchymal differentiation
Gargini R*, Segura-Collar B*, Hernández-SanMiguel E, Garcia-Escudero V, Romero-Bravo A, Herránz B, Núñez FJ, Cantero D, García-Pérez D, Ayuso-Sacido A, Seoane J, Sepúlveda-Sánchez JM, Hernández-Laín A, Castro MG, García-Escudero R, Ávila J* and Sánchez-Gómez P*. (* Co-corresponding author) (* Co-1st author) (2020) The IDH-Tau-EGFR triad defines the neovascular landscape of diffuse gliomas by controlling mesenchymal differentiation. Sci. Transl. Med.12 (527). PMID: 31969485 doi: 10.1126/scitranslmed.aax1501
DOIThe EGFR-TMEM167A-p53 Axis Defines the Aggressiveness of Gliomas
Segura-Collar B, Gargini R, Tovar-Ambel E, Hernández-SanMiguel E, Epifano C, Pérez de Castro I, Hernández-Laín A, Casas-Tintó S, Sánchez-Gómez P. (2020) The EGFR-TMEM167A-p53 Axis Defines the Aggressiveness of Gliomas. Cancers 12(1):208. PMID: 31947645 doi: 10.3390/cancers12010208
DOINovel Functions of the Neurodegenerative-Related Gene Tau in Cancer
Gargini R*, Segura-Collar B*, Sánchez-Gómez P. (* Co-1st author) (2019) Novel Functions of the Neurodegenerative-Related Gene Tau in Cancer. Front Aging Neurosci. 11:231. PMID: 31551755 doi: 10.3389/fnagi.2019.00231
DOIOncogenic dependence of glioma cells to Kish/TMEM167A regulation of vesicular trafficking
Portela M#, Segura B#, Argudo I, Sáiz A, Gargini R, Sánchez-Gómez P*, Casas-Tintó S*. (* Co-corresponding authors) (# Co-1st author) (2019) Oncogenic dependence of glioma cells to Kish/TMEM167A regulation of vesicular trafficking. GLIA 67(2):404-417. PMID: 30506943 doi: 10.1002/glia.23551
DOIOcoxin Modulates Cancer Stem Cells and M2 Macrophage Polarization in Glioblastoma
Hernández SanMiguel, E.; Gargini, R.; Cejalvo, T., Segura-Collar B, Núñez-Hervada P, Hortigüela R, Sepúlveda-Sánchez JM, Hernández-Laín A, Pérez-Núñez A, Sanz E, Sánchez Gómez, P. (2019) Ocoxin Modulates Cancer Stem Cells and M2 Macrophage Polarization in Glioblastoma. Oxid.Med.Cell. Longev. pp.9719730. PMID: 31467641. doi: 10.1155/2019/9719730
DOIThe Netrin-4/ Neogenin-1 axis promotes neuroblastoma cell survival and migration
Villanueva AA, Falcón P, Espinoza N, R LS, Milla LA, Hernández-SanMiguel E, Torres VA, Sanchez-Gomez P, Palma V. (2017) The Netrin-4/ Neogenin-1 axis promotes neuroblastoma cell survival and migration. Oncotarget 8(6):9767-9782. PMID: 28038459 doi: 18632/oncotarget.14213
DOIApplied mathematics and nonlinear sciences in the war on cancer
Pérez-García VM, Fitzpatrick S, Pérez-Romasanta LA, Pesic M, Schucht P, Arana E, Sánchez-Gómez P. (2016) Applied mathematics and nonlinear sciences in the war on cancer. App. Math. Nonlin. Sci. 1(2): 423–436 doi: 10.21042/AMNS.2016.2.00036
DOIPreclinical test of dacomitinib, an irreversible EGFR inhibitor, confirms its effectiveness for glioblastoma
Zahonero C, Aguilera P, Ramírez-Castillejo C, Pajares M, Bolós MV, Cantero C, Pérez-Núñez A, Hernández-Laín A, Sánchez-Gómez P*, Sepúlveda JM*. (*Co-corresponding authors) (2015) Preclinical test of dacomitinib, an irreversible EGFR inhibitor, confirms its effectiveness for glioblastoma. Mol. Can. Ther. 14(7):1548-58. PMID: 25939761 doi: 10.1158/1535-7163.MCT-14-0736
DOIControlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma
González-Gómez P, Crecente-Campo J, Zahonero C, de la Fuente M, Hernández-Laín A, Mira H*, Sánchez-Gómez P*, García-Fuentes M* (* Co-corresponding authors). (2015) Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma. Oncotarget, 6 (13): 10950-10963. PMID: 25860932 doi: 10.18632/oncotarget.3459
DOIEGFR-dependent mechanisms in glioblastoma: towards a better therapeutic strategy
Zahonero C and Sánchez-Gómez P. (2014) EGFR-dependent mechanisms in glioblastoma: towards a better therapeutic strategy. Cel. Mol. Life Sci. 71 (18): 3465-88. PMID: 24671641 doi: 10.1007/s00018-014-1608-1
DOIDYRK1A destabilizes EGFR and reduces EGFR-dependent glioblastoma growth
Pozo Zahonero, Fernández P, Liñares JM, Ayuso A, Hagiwara M, Pérez A, Ricoy JR, Hernández-Laín A, Sepúlveda JM, Sánchez-Gómez P. (2013) Inhibition of DYRK1A destabilizes EGFR and reduces EGFR-dependent glioblastoma growth. J. Clin. Invest. 123(6):2475-87. PMID: 23635774 doi: 10.1172/JCI63623
DOIInformación adicional
El trabajo de nuestra Unidad se centra en el estudio del comportamiento de los tumores cerebrales, en concreto los gliomas de grado 4, los glioblastomas (GBM), que son tumores muy agresivos y con un índice de supervivencia de unos 12-15 meses. Entre las principales barreras en el tratamiento de estos tumores están su elevada heterogeneidad y su alto nivel de quimioresistencia a los agentes citotóxicos convencionales A pesar de que la cirugía elimine la masa tumoral principal y el paciente sea tratado con radioterapia local y quimioterapia sistémica, los GBM siempre recidivan a partir de las células tumorales que quedan en el cerebro tras la cirugía, siendo responsables de la muerte del paciente. En el laboratorio seguimos un abordaje traslacional para caracterizar la distribución de las células tumorales tanto en el centro del tumor como en las zonas periféricas, así como su interacción con las células del microambiente cerebral, que también participan en la agresividad de estos tumores.
Esquema que muestra la presencia de diferentes microambientes tumorales en el centro tumoral de los glioblastomas (arriba) y en el frente invasivo (periferia) (abajo). Figura generada por Ismael Gacem (@ismael_gacem).
La Unidad colabora estrechamente con expertos clínicos del Hospital 12 de Octubre, lo que nos permite participar en estudios moleculares y celulares con muestras de pacientes (ver como ejemplo la figura de abajo), así como establecer cultivos primarios y alo- y xeno-injertos en modelos murinos. Estos modelos son utilizados en diferentes proyectos de investigación en colaboración con empresas farmacéuticas y con otros equipos de investigación multidisciplinares (matemáticos, ingenieros, bioinformáticos, químicos). Nuestro objetivo final es mejorar las terapias existentes, o bien diseñar estrategias alternativas.
Link a la página web del laboratorio: http://www.gliomalab.com
Redes:
@gliomalab
https://www.linkedin.com/in/pilar-s%C3%A1nchez-g%C3%B3mez-7b571826
https://www.linkedin.com/in/reachglio-project-06506530b/