Logo del Gobierno de España Logo del Ministerio de ciencia, innovación y universidades Logo del Instituto de Salud Carlos tercero Logo UFIEC

Protegemos tu salud a través de la Ciencia

Investigación

Neuro-Oncología

Líneas de investigación

Contenidos con Investigacion Neuro-Oncología .

Neuro-Oncología

Caracterización de la zona peritumoral de los gliomas.

En nuestros proyectos anteriores nos habíamos centrado en el núcleo tumoral de los gliomas. Sin embargo, la recurrencia de los glioblastomas agresivos se produce mayoritariamente en el margen de resección del tumor, una zona poco caracterizada que probablemente es diferente del núcleo tumoral. En colaboración con el Dr. Pérez-Núñez en el H. 12 de Octubre estamos realizando un estudio prospectivo para analizar la composición de esta zona peritumoral. Queremos cuantificar tanto las células neoplásicas como las estromales y cómo cambian tras la cirugía. Nuestro objetivo es identificar enfoques novedosos para atacar a aquellas células tumorales que son responsables de la recurrencia del tumor. Este proyecto nos ha permitido generar una cohorte de biopsias bien definidas guiadas por resonancia magnética, que están siendo analizadas por diferentes técnicas avanzadas (single-nuclei RNAseq, proteómica, inmunofluorescencia “multiplex”). Además, en colaboración con el Dr. Derek Wainwright (Loyola Univ. Chicago) estamos estudiando la relevancia del envejecimiento en el fenotipo de la zona peritumoral de los gliomas, así como el efecto de factores sistémicos (como la inflamación general o el estado de la microbiota) en la respuesta de los cerebros al crecimiento de los gliomas.

Análisis mediante immunofluorescencia de la expresión de NKG2C en la periferia (imágenes superiores) y en el centro (imágenes inferiores) tumoral de muestras de tres pacientes con glioblastoma. Figura sacada de nuestra publicación: deDios et al., J. Inmmunother. Cancer 2024.

 

Enfoques multidisciplinares para la optimización del tratamiento de los gliomas.

Creemos que se necesitan enfoques multidisciplinares para encontrar terapias eficaces contra los gliomas agresivos. De hecho, hemos colaborado durante varios años con el grupo de Oncología Matemática (MoLAB) de la UCLM (Universidad Castilla la Mancha), dirigido por el Dr. Víctor Pérez-García. Mediante modelos matemáticos, validados con modelos in vitro e in vivo, hemos propuesto esquemas optimizados para el tratamiento con temozolomida y radioterapia. Además, hemos iniciado una colaboración con bioingenieros (Univ. Politécnica de Madrid) y químicos (IMDEA Materiales) para diseñar y probar un dispositivo implantable para el tratamiento de GBM utilizando campos eléctricos alternos (“Tumor Treating Fields”, TTFs).

Otro importante hándicap en el tratamiento del glioma es la dificultad para atravesar la barrera hematoencefálica (“Blood Brain Barrier”, BBB) y alcanzar las células tumorales. Se han propuesto estrategias para permeabilizar selectivamente la BBB, así como el uso de nanopartículas (NPs) para mejorar la penetrancia de los distintos fármacos en los tumores gliales y que eliminen de manera selectiva las células malignas. Sin embargo, todavía no se ha llegado a mejoras en la clínica. El proyecto de colaboración que coordinamos (ReachGLIO, TRANSCAN3) proporcionará el marco preclínico necesario para desarrollar una terapia novedosa y eficaz para el GBM basada en NPs cargadas con potentes fármacos anti-glioblastoma.

Neurodegeneración asociada a gliomas: participación de la disrupción de la BBB.

Aunque las enfermedades neurodegenerativas y los gliomas parecen patologías opuestas del cerebro (una promueve la muerte celular y la otra la proliferación celular) tienen varias características en común, como hemos descrito previamente (Gargini et al., Sci. Trans. Med. 2019). La principal es que ambos tipos de enfermedades se asocian a cambios en la unidad neurovascular y en la permeabilidad de los vasos cerebrales. Nuestra hipótesis es que la alteración de la barrera hematoencefálica, típica de los gliomas agresivos, podría inducir la pérdida neuronal asociada a estos tumores. De hecho, hemos encontrado una correlación directa entre los niveles de fuga de los vasos, y la pérdida de neuronas que rodean a los tumores, asociada a un fuerte aumento de la expresión de señales inflamatorias. Estos resultados se han sometido recientemente a evaluación y abren una nueva vía a intervenciones terapéuticas para inducir la normalización vascular en gliomas, pero también en enfermedades como el Alzheimer.

Proyectos de investigación

Contenidos con Investigacion Neuro-Oncología .

TÍTULO DEL PROYECTO: Maladaptive effects of the aged brain in older adults with glioblastoma. (ARC2300007).

INVESTIGADOR PRINCIPAL: Derek Wainwright (Loyola University) / Pilar Sánchez Gómez.

ENTIDAD FINANCIADORA: American Brain Tumor Association. Collaborative Awards.

IMPORTE: 200.000$ -- DURACIÓN: 2023-2025

TÍTULO DEL PROYECTO: Reaching the heterogeneous vascular landscape of glioblastoma with multifunctional nanomedicine. ReachGLIO.

INVESTIGADOR PRINCIPAL: Pilar Sánchez Gómez (Coordinadora).

ENTIDAD FINANCIADORA: TRANSCAN3 / ERA-NET (FC-AECC e ISCIII)

IMPORTE: 1.391.131€ -- DURACIÓN: 2023-2026

TÍTULO DEL PROYECTO: Dispositivo implantable para el tratamiento de tumores cerebrales mediante campos eléctricos.

INVESTIGADOR PRINCIPAL: Miguel Jiménez Carrizosa (UPM) (Coordinador).

ENTIDAD FINANCIADORA: European Union-Next Generation Funds; Ministerio de Ciencia e Innovación. Líneas estratégicas (PLEC2022-009308).

IMPORTE: 1.174.263€ -- DURACIÓN: 2022-2025

TÍTULO DEL PROYECTO: Mathematical models for the digital transition in neuro-oncology: In-silico design of a clinical trial for glioblastoma. (TED2021-132318B-I00).

INVESTIGADOR PRINCIPAL: Víctor Pérez García (UCLM) / Pilar Sánchez-Gómez

ENTIDAD FINANCIADORA: Proyectos de Transición Ecológica y Transición Digital. European Union-Next Generation Funds; Ministerio de Ciencia e Innovación.

IMPORTE: 230.000€  -- DURACIÓN: 2023-2024

TÍTULO DEL PROYECTO: Characterization of the peritumoral area of glioblastomas: burning the bridges to tumor progression. (PI21CIII/00002/PI21/01168).

INVESTIGADOR PRINCIPAL: Pilar Sánchez-Gómez / Ángel Pérez-Núñez (H12O).

ENTIDAD FINANCIADORA: Instituto de Salud Carlos III (AES-AESI)

IMPORTE: 202.000€ -- DURACIÓN: 2022-2025

TÍTULO DEL PROYECTO: Preclinical studies for the therapeutic development of the drug ICI-118,551

INVESTIGADOR PRINCIPAL: Pilar Sánchez-Gómez / Juan Manuel Sepúlveda (H12O).

ENTIDAD FINANCIADORA: Varsity Pharmaceuticals Limited.

IMPORTE: 95.000€ -- DURACIÓN: 2021-2024

TÍTULO DEL PROYECTO: NKG2C as a surrogate marker for gliomas responding to immune checkpoints inhibitory therapy.

INVESTIGADOR PRINCIPAL: Pilar Sánchez-Gómez

ENTIDAD FINANCIADORA: FC-AECC

IMPORTE: 20.000€ -- DURACIÓN: 2020-2022

TÍTULO DEL PROYECTO: Glioblastoma-derived pericytes modulate vascular fitness: Implications for therapy. RTI2018-093596-B100.

INVESTIGADOR PRINCIPAL: Pilar Sánchez-Gómez

ENTIDAD FINANCIADORA: Ministerio de Ciencia e Innovación.

IMPORTE: 121.000€ -- DURACIÓN: 2019-2021

TÍTULO DEL PROYECTO: Efecto de inhibidores de proteínas IDP ("Intrinsically disordered proteins") sobre el crecimiento y la supervivencia de células gliales

INVESTIGADOR PRINCIPAL: Pilar Sánchez Gómez

ENTIDAD FINANCIADORA: IDP Pharma

IMPORTE: 100.00€ -- DURACIÓN: 2017-2020

TÍTULO DEL PROYECTO: Efecto de Ocoxin+Viusid sobre el crecimiento y supervivencia de los tumores gliales.

INVESTIGADOR PRINCIPAL: Pilar Sánchez Gómez

ENTIDAD FINANCIADORA: CATALYSIS S.L.

IMPORTE: 45.000€ -- DURACIÓN: 2016-2017

TÍTULO DEL PROYECTO: Microenvironment-mediated resistance of glioblastoma: characterization of its biological relevance and proposal of synergistic therapeutical approaches

INVESTIGADOR PRINCIPAL: Pilar Sánchez Gómez

ENTIDAD FINANCIADORA: Ministerio de Economía y Competitividad (MINECO)

IMPORTE: 145.000€ -- DURACIÓN: 2016-2019

Publicaciones destacadas

Categoría
Ordenar

Intraepithelial paracrine Hedgehog signaling induces the expansion of ciliated cells that express diverse progenitor cell markers in the basal epithelium of the mouse mammary gland

García-Zaragoza, E.; Pérez-Tavarez, R.; Ballester, A.; Lafarga, V.; Jiménez- Reinoso, A.; Jiménez-Reinoso, A.; Ramírez, A.; Murillas, R. and Gallego, M.I. Intraepithelial paracrine Hedgehog signaling induces the expansion of ciliated cells that express diverse progenitor cell markers in the basal epithelium of the mouse mammary gland. Dev. Biol. (2012) 372-1, pp.28-44. PMID: 23000969 doi:10.1016/j.ydbio.2012.09.005

PUBMED DOI

Mesenchymal Stem Cells delivery in individuals with different pathologies. Multimodal tracking, safety and future applications

Belmar-López C, Vassaux G, Medel-Martinez A, Burnet J, Quintanilla M, Ramón Y Cajal S, Hernandez-Losa J, De la Vieja A*, and Martin-Duque P*. Mesenchymal Stem Cells delivery in individuals with different pathologies. Multimodal tracking, safety and future applications. International Journal of Molecular Sciences 2022 Jan 31;23(3):1682. doi: 10.3390/ijms23031682. PMID: 35163605

PUBMED DOI

Curcumin and Ethanol Effects in Trembler-J Schwann Cell Culture

Vázquez Alberdi L, Rosso G, Velóz L, Romeo C, Farias J, Di Tomaso MV, Calero M, Kun A. Curcumin and Ethanol Effects in Trembler-J Schwann Cell Culture. Biomolecules. 2022 12(4):515. doi: 10.3390/biom12040515.

DOI

Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data

Al Khleifat A, Iacoangeli A, Jones AR, van Vugt J, Moisse M, Shatunov A, et al. Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data. Front Cell Neurosci. 2022;16:1050596. Q1.

Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data

Al Khleifat A, Iacoangeli A, Jones AR, van Vugt J, Moisse M, Shatunov A, et al. Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data. Front Cell Neurosci. 2022;16:1050596. Q1.

An HPF1/PARP1-Based Chemical Biology Strategy for Exploring ADP-Ribosylation

Bonfiglio JJ, Leidecker O, Dauben H, Longarini EJ, Colby T, San Segundo-Acosta P, Perez KA, Matic I. An HPF1/PARP1-Based Chemical Biology Strategy for Exploring ADP-Ribosylation. Cell. 2020; 183:1086-1102.e23.

DOI

Regulation of endothelial dynamics by PGC-1alpha relies on ROS control of VEGF-A signaling Free Radic Biol Med

I Prieto; C Sánchez-Ramos; A Luque; E Arza; Y Olmos; M Monsalve. (3/6). 2016. Regulation of endothelial dynamics by PGC-1alpha relies on ROS control of VEGF-A signaling Free Radic Biol Med. 2016 Apr;93:41-51. https://doi.org/10.1016/j.freeradbiomed.2016.01.021

DOI

Sos GEFs: old concepts and new perspectives

Rojas JM, Oliva JL & Santos E. Mammalian Sos GEFs: old concepts and new perspectives. Genes & Cancer. 2011; 2: 298-305. doi: 10.1177/1947601911408078

DOI

Early induction of senescence and immortalization in PGC-1α-deficient mouse embryonic fibroblasts

Early induction of senescence and immortalization in PGC-1α-deficient mouse embryonic fibroblasts. Prieto I, Zambrano A, Laso J, Aranda A, Samper E, Monsalve M. Free Radic Biol Med. 2019 Jul;138:23-32. doi: 10.1016/j.freeradbiomed.2019.04.015. Epub 2019 Apr 25. PMID: 31029787.

PUBMED DOI

Amyloid precursor protein (APP) regulates gliogenesis and neurogenesis of human neural stem cells by several signaling pathways

Coronel, R.; Bernabeu-Zornoza, A.; Palmer, C.; González-Sastre, R.; Rosca, A.; Mateos-Martínez, P.; López-Alonso, V.; Liste, I. (2023). Amyloid precursor protein (APP) regulates gliogenesis and neurogenesis of human neural stem cells by several signaling pathways. Int J Mol Sci. 24, 12964. doi: 10.3390/ijms241612964.

DOI

Altered Clock Gene Expression in Female APP/PS1 Mice and Aquaporin-Dependent Amyloid Accumulation in the Retina

Carrero L, Antequera D, Alcalde I, Megias D, Ordoñez-Gutierrez L, Gutierrez C, Merayo-Lloves J, Wandosell F, Municio C, Carro E. Altered Clock Gene Expression in Female APP/PS1 Mice and Aquaporin-Dependent Amyloid Accumulation in the Retina. Int J Mol Sci. 2023 Oct 27;24(21):15679. doi: 10.3390/ijms242115679.

DOI

Blood-Brain Barrier Disruption: A Common Driver of Central Nervous System Diseases

Segura-Collar B, Mata-Martínez P, Hernández-Laín A, Sánchez-Gómez P*, Gargini R*. (* co-corresponding) (2021) Blood-Brain Barrier Disruption: A Common Driver of Central Nervous System Diseases. The Neuroscientist. Jan 15: 1073858420985838. PMID: 33446074 doi: 10.1177/1073858420985838

DOI

Proteomics analysis of prefrontal cortex of Alzheimer’s disease patients revealed dysregulated proteins in the disease and novel proteins associated with amyloid-β pathology

Montero-Calle, A.; Coronel, R.; Garranzo-Asensio, M.; Solís-Fernández, G.; Rábano, A.; de los Ríos, V.; Fernández-Aceñero, M.J.; Mendes, M.L.; Martínez-Useros, J.; Megías, D.; Moreno-Casbas, M.T.; Peláez-García, A.; Liste, I.; Barderas, R. (2023). Proteomics analysis of prefrontal cortex of Alzheimer’s disease patients revealed dysregulated proteins in the disease and novel proteins associated with amyloid-β pathology. Cell Mol Life Sci. 80, 141. doi: 10.1007/s00018-023-04791-y

DOI

Human immunodeficiency virus type 1 chronic infection is associated with different gene expression in MT-4, H9 and U937 cell lines

Olivares I, Ballester A, Lombardia L, Domínguez O and López-Galíndez C. Human immunodeficiency virus type 1 chronic infection is associated with different gene expression in MT-4, H9 and U937 cell lines. Virus research (2009) 139-1, pp.22-31. ISSN0168-1702 doi:10.1016/j.virusres.2008.09.010

PUBMED DOI

The complex regulation of NIS expression and activity in thyroid and extrathyroidal tissues

Riesco-Eizaguirre G*, Santisteban P and De la Vieja A*. The complex regulation of NIS expression and activity in thyroid and extrathyroidal tissues. Endocrine-Related Cancer 2021 28(10):T141-T165. PMID: 34387194. doi: 10.1530/ERC-21-0217

DOI

New insights into the genetic etiology of Alzheimer's disease and related dementias

Bellenguez et al. New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat Genet. 2022 54(4):412-436. doi: 10.1038/s41588-022-01024-z.

DOI

Metabolic Reprogramming Helps to Define Different Metastatic Tropisms in Colorectal Cancer

Montero-Calle A, Gomez de Cedron M, Quijada-Freire A, Solis-Fernandez G, Lopez-Alonso V, Espinosa-Salinas I, et al. Metabolic Reprogramming Helps to Define Different Metastatic Tropisms in Colorectal Cancer. Front Oncol. 2022;12:903033. Q1

Multiplexed monitoring of a novel autoantibody diagnostic signature of colorectal cancer using HaloTag technology-based electrochemical immunosensing platform

Garranzo-Asensio M, Guzmán-Aránguez A, Povedano E, Ruiz-Valdepeñas Montiel V, Poves C, Fernandez-Aceñero MJ, Montero-Calle A, Solís-Fernández G, Fernandez-Diez S, Camps J, Arenas M, Rodríguez-Tomàs E, Joven J, Sanchez-Martinez M, Rodriguez N, Dominguez G, Yáñez-Sedeño P, Pingarrón JM, Campuzano S, Barderas R. Multiplexed monitoring of a novel autoantibody diagnostic signature of colorectal cancer using HaloTag technology-based electrochemical immunosensing platform. Theranostics 2020; 10(7):3022-3034.

DOI

Intersectin 1 enhances Cbl ubiquitylation of epidermal growth factor receptor through regulation of Sprouty2-Cbl interaction

Okur MN, Zhu JO, Fong CW, Martinez N, Garcia-Dominguez C, Rojas JM, Guy G & O'Bryan J. Intersectin 1 enhances Cbl ubiquitylation of epidermal growth factor receptor through regulation of Sprouty2-Cbl interaction. Molecular and Cellular Biology. 2012; 32(4):817-25. doi:10.1128/MCB.05647-11

DOI

Tumor suppressor ARF regulates tissue microenvironment and tumorgrowth through modulation of macrophage polarization Oncotarget

L Jiménez-García; S Herranz; MA Higueras; (AC); A Luque; S Hortelano. 2016. Tumor suppressor ARF regulates tissue microenvironment and tumorgrowth through modulation of macrophage polarization Oncotarget. 2016 Oct 11;7(41):66835-66850. https://doi.org/10.18632/oncotarget.11652.

DOI

Contenidos con Investigacion Neuro-Oncología .

Listado de personal

Información adicional

El trabajo de nuestra Unidad se centra en el estudio del comportamiento de los tumores cerebrales, en concreto los gliomas de grado 4, los glioblastomas (GBM), que son tumores muy agresivos y con un índice de supervivencia de unos 12-15 meses. Entre las principales barreras en el tratamiento de estos tumores están su elevada heterogeneidad y su alto nivel de quimioresistencia a los agentes citotóxicos convencionales A pesar de que la cirugía elimine la masa tumoral principal y el paciente sea tratado con radioterapia local y quimioterapia sistémica, los GBM siempre recidivan a partir de las células tumorales que quedan en el cerebro tras la cirugía, siendo responsables de la muerte del paciente. En el laboratorio seguimos un abordaje traslacional para caracterizar la distribución de las células tumorales tanto en el centro del tumor como en las zonas periféricas, así como su interacción con las células del microambiente cerebral, que también participan en la agresividad de estos tumores.

Esquema que muestra la presencia de diferentes microambientes tumorales en el centro tumoral de los glioblastomas (arriba) y en el frente invasivo (periferia) (abajo). Figura generada por Ismael Gacem (@ismael_gacem).

La Unidad colabora estrechamente con expertos clínicos del Hospital 12 de Octubre, lo que nos permite participar en estudios moleculares y celulares con muestras de pacientes (ver como ejemplo la figura de abajo), así como establecer cultivos primarios y alo- y xeno-injertos en modelos murinos. Estos modelos son utilizados en diferentes proyectos de investigación en colaboración con empresas farmacéuticas y con otros equipos de investigación multidisciplinares (matemáticos, ingenieros, bioinformáticos, químicos). Nuestro objetivo final es mejorar las terapias existentes, o bien diseñar estrategias alternativas.

Link a la página web del laboratorio: http://www.gliomalab.com

Redes:

@gliomalab

https://www.linkedin.com/in/pilar-s%C3%A1nchez-g%C3%B3mez-7b571826

https://www.linkedin.com/in/reachglio-project-06506530b/


 

Contenidos con Investigacion Neuro-Oncología .